
About BPL

Here is a typical BPL program:
int fact(int n) {
 if (n == 0)
 return 1;
 else
 return n*fact(n-1);

void main(void) {
 int x;
 x = 1;
 while (x < 10) {
 write(x);
 write(fact(x));
 writeln();
 x = x + 1;
 }
}

• A program is a sequence of declarations, one of
which should be of a function main().

• White space is ignored in BPL.

• The semicolon acts as a statement terminator.

• The comment delimiters in BPL are /* and */

• The grammar for BPL in the reference manual
defines exactly how the syntax works. If you
aren't familiar with grammars, we'll start
working with them by the end of this week.

The datatypes of BPL are
• integer as in int x;

• string as in string s;

• pointer to integer as in int *p;

• pointer to string, as in string *q;

• integer array, as in int A[10];

• string array, as in string B[5];

BPL has no string library; strings are only constant.

There is no dynamic memory allocation, though
functions can have local data, including local arrays.
Pointers exist in BPL to allow for C-style call-by-
reference functions.

Note that, unlike C, BPL does runtime bounds
checking on arrays. If you declare array A to have
length 5 and pass it to a function that tries to access
entry [10], an error occurs. The compiler doesn't
catch this; the assembly language code your
compiler generates catches it.

